A Novel Rock Mass Discontinuity Detection Approach with CNNs and Multi-View Image Augmentation
Discontinuity is a key element used by geoscientists and civil engineers to characterize rock masses. The traditional approach to detecting and measuring rock discontinuity relies on fieldwork, which poses dangers to human life. Photogrammetric pattern recognition and 3D measurement techniques offer...
Gespeichert in:
Veröffentlicht in: | ISPRS international journal of geo-information 2024-06, Vol.13 (6), p.185 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discontinuity is a key element used by geoscientists and civil engineers to characterize rock masses. The traditional approach to detecting and measuring rock discontinuity relies on fieldwork, which poses dangers to human life. Photogrammetric pattern recognition and 3D measurement techniques offer new possibilities without direct contact with rock masses. This study proposes a new approach to detect discontinuities using close-range photogrammetric techniques and convolutional neural networks (CNNs) trained on a small amount of data. Investigations were conducted on basalts in Bala, Ankara, Türkiye. A total of 34 multi-view images were collected with a remotely piloted aircraft system (RPAS), and discontinuity lines were manually delineated on a point cloud generated from these images. The lines were back-projected onto the raw images to increase the amount of data, a process we call multi-view (3D) augmentation. We further evaluated radiometric and geometric augmentation methods, the contribution of multi-view augmentation to the proposed model, and the transfer learning performance of six different CNN architectures. The highest performance was achieved with U-Net + SE-ResNeXt-50 with an F1-score of 90.6%. The CNN model trained from scratch with local features also yielded a similar F1-score (91.7%), which is the highest performance reported in the literature. |
---|---|
ISSN: | 2220-9964 2220-9964 |
DOI: | 10.3390/ijgi13060185 |