Symmetries of supergravity backgrounds and supersymmetric field theory

A bstract In four spacetime dimensions, all N = 1 supergravity-matter systems can be formulated in the so-called U(1) superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a background U(1) superspace and are important in the context...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-04, Vol.2020 (4), p.1-51, Article 133
Hauptverfasser: Kuzenko, Sergei M., Raptakis, Emmanouil S.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract In four spacetime dimensions, all N = 1 supergravity-matter systems can be formulated in the so-called U(1) superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a background U(1) superspace and are important in the context of supersymmetric field theory in curved space. We introduce (conformal) Killing tensor superfields ℓ α 1 … α m α ⋅ 1 … α ⋅ n , with m and n non-negative integers, m + n > 0, and elaborate on their significance in the following cases: (i) m = n = 1; (ii) m − 1 = n = 0; and (iii) m = n > 1. The (conformal) Killing vector superfields ℓ α α ⋅ generate the (conformal) isometries of curved superspace, which are symmetries of every (conformal) supersymmetric field theory. The (conformal) Killing spinor superfields ℓ α generate extended (conformal) supersymmetry transformations. The (conformal) Killing tensor superfields with m = n > 1 prove to generate all higher symmetries of the (massless) massive Wess-Zumino operator.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP04(2020)133