The predictive power of health system environments: a novel approach for explaining inequalities in access to maternal healthcare

IntroductionThe growing use of Geographic Information Systems (GIS) to link population-level data to health facility data is key for the inclusion of health system environments in analyses of health disparities. However, such approaches commonly focus on just a couple of aspects of the health system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMJ global health 2020-02, Vol.4 (Suppl 5), p.e002139
1. Verfasser: Sochas, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IntroductionThe growing use of Geographic Information Systems (GIS) to link population-level data to health facility data is key for the inclusion of health system environments in analyses of health disparities. However, such approaches commonly focus on just a couple of aspects of the health system environment and only report on the average and independent effect of each dimension.MethodsUsing GIS to link Demographic and Health Survey data on births (2008–13/14) to Service Availability and Readiness Assessment data on health facilities (2010) in Zambia, this paper rigorously measures the multiple dimensions of an accessible health system environment. Using multilevel Bayesian methods (multilevel analysis of individual heterogeneity and discriminatory accuracy), it investigates whether multidimensional health system environments defined with reference to both geographic and social location cut across individual-level and community-level heterogeneity to reliably predict facility delivery.ResultsRandom intercepts representing different health system environments have an intraclass correlation coefficient of 25%, which demonstrates high levels of discriminatory accuracy. Health system environments with four or more access barriers are particularly likely to predict lower than average access to facility delivery. Including barriers related to geographic location in the non-random part of the model results in a proportional change in variance of 74% relative to only 27% for barriers related to social discrimination.ConclusionsHealth system environments defined as a combination of geographic and social location can effectively distinguish between population groups with high versus low probabilities of access. Barriers related to geographic location appear more important than social discrimination in the context of Zambian maternal healthcare access. Under a progressive universalism approach, resources should be disproportionately invested in the worst health system environments.
ISSN:2059-7908
2059-7908
DOI:10.1136/bmjgh-2019-002139