Modeling Static Behavior of Rockfill Materials Based on Generalized Plasticity Model

Rockfill materials are commonly used for dam construction. Establishing an effective model that can reasonably describe the mechanical properties of rockfill material is very important for the calculation of earth-rock dam engineering. Based on the generalized plasticity model of sand, a modified ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Civil Engineering 2019, Vol.2019 (2019), p.1-14
Hauptverfasser: Bian, Shihai, Ma, Yongzheng, Wu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rockfill materials are commonly used for dam construction. Establishing an effective model that can reasonably describe the mechanical properties of rockfill material is very important for the calculation of earth-rock dam engineering. Based on the generalized plasticity model of sand, a modified generalized plasticity model suitable for rockfill material is established by modifying the plastic modulus. Focusing on three types of stress paths (e.g., CT test, CP test, and CR test), the stress path adaptability of the modified generalized plasticity is studied. Simulation results show that the proposed model can well predict the strength characteristics while it underestimates the shrinkage characteristics of rockfill materials for constant P test. It is difficult for the generalized plasticity model to predict larger radial shrinkage strain for constant stress ratio tests. This shortcoming can be improved by employing a modified dilatancy equation. Finally, by introducing critical state theory and considering the effect of initial void ratio on plastic modulus, a state-dependent generalized plasticity model is proposed and verified by experiment of granite rockfill materials and TRM with different void ratios. These works covers the most common stress paths related to the construction of earth-rock dams and can capture static behavior of rockfill materials.
ISSN:1687-8086
1687-8094
DOI:10.1155/2019/2371709