Numerical and analytical investigation of vertical axis wind turbine
The majority of wind turbine research is focused on accurately efficiency prediction. This work highlights the progress made in the development of aerodynamic models for studying Vertical-Axis Wind Turbines (VAWTs) with particular emphasis on stream tube approach. Numerical and analytical investigat...
Gespeichert in:
Veröffentlicht in: | FME transactions 2013-01, Vol.41 (1), p.49-58 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The majority of wind turbine research is focused on accurately efficiency prediction. This work highlights the progress made in the development of aerodynamic models for studying Vertical-Axis Wind Turbines (VAWTs) with particular emphasis on stream tube approach. Numerical and analytical investigation is conducted on straight blade fixed pitch VAWT using NACA0012 airfoil as a blade profile to assess its performance. Numerical simulation is done for two-dimensional unsteady flow around the same VAWT model using ANSYS FLUENT by solving Reynolds- averaged Navier-Stokes equations. Finally, comparison of the analytical results using double multiple stream tube (DMST) model with computational fluid dynamics (CFD) simulation has been done. Both the CFD and DMST results have shown minimum and/or negative torque and performance at lower tip speed ratios for the modeled turbine, which implies the inability of NACA0012 to self start. |
---|---|
ISSN: | 1451-2092 2406-128X |