Developing a Long Short-Term Memory-Based Model for Forecasting the Daily Energy Consumption of Heating, Ventilation, and Air Conditioning Systems in Buildings

Forecasting the energy consumption of heating, ventilating, and air conditioning systems is important for the energy efficiency and sustainability of buildings. In fact, conventional models present limitations in these systems due to their complexity and unpredictability. To overcome this, the long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-08, Vol.11 (15), p.6722
Hauptverfasser: Mendoza-Pittí, Luis, Calderón-Gómez, Huriviades, Gómez-Pulido, José Manuel, Vargas-Lombardo, Miguel, Castillo-Sequera, José Luis, de Blas, Clara Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forecasting the energy consumption of heating, ventilating, and air conditioning systems is important for the energy efficiency and sustainability of buildings. In fact, conventional models present limitations in these systems due to their complexity and unpredictability. To overcome this, the long short-term memory-based model is employed in this work. Our objective is to develop and evaluate a model to forecast the daily energy consumption of heating, ventilating, and air conditioning systems in buildings. For this purpose, we apply a comprehensive methodology that allows us to obtain a robust, generalizable, and reliable model by tuning different parameters. The results show that the proposed model achieves a significant improvement in the coefficient of variation of root mean square error of 9.5% compared to that proposed by international agencies. We conclude that these results provide an encouraging outlook for its implementation as an intelligent service for decision making, capable of overcoming the problems of other noise-sensitive models affected by data variations and disturbances without the need for expert knowledge in the domain.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11156722