Radiometric Calibration for AgCam

The student-built Agricultural Camera (AgCam) now onboard the International Space Station observes the Earth surface through two linescan cameras with Charge-Coupled Device (CCD) arrays sensitive to visible and near-infrared wavelengths, respectively. The electro-optical components of the AgCam were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2010-02, Vol.2 (2), p.464-477
Hauptverfasser: Olsen, Doug, Dou, Changyong, Zhang, Xiaodong, Hu, Lianbo, Kim, Hojin, Hildum, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The student-built Agricultural Camera (AgCam) now onboard the International Space Station observes the Earth surface through two linescan cameras with Charge-Coupled Device (CCD) arrays sensitive to visible and near-infrared wavelengths, respectively. The electro-optical components of the AgCam were characterized using precision calibration equipment; a method for modeling and applying these measurements was derived. Correction coefficients to minimize effects of optical vignetting, CCD non-uniform quantum efficiency, and CCD dark current are separately determined using a least squares fit approach. Application of correction coefficients yields significant variability reduction in flat-field images; comparable results are obtained when applied to ground test images.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs2020464