Relaxant Effect of Bioactive Component Compatibility of San-ao Decoction on In vitro Guinea Pig Airway Smooth Muscle: A Dose-Response Relationship Study

Background: Component compatibility is important to the modernization of traditional Chinese medicine. Studies have shown that San-ao decoction (SAD) can treat respiratory diseases by relaxing airway smooth muscle (ASM) and reducing airway hyper-responsiveness. However, whether its bioactive compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World Journal of Traditional Chinese Medicine 2022-04, Vol.8 (2), p.262-272
Hauptverfasser: Song, Wen-Jie, Fu, Yan-Ling, Ni, Sheng-Lou, Fan, Jia-Jia, Du, Qian, Zheng, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Component compatibility is important to the modernization of traditional Chinese medicine. Studies have shown that San-ao decoction (SAD) can treat respiratory diseases by relaxing airway smooth muscle (ASM) and reducing airway hyper-responsiveness. However, whether its bioactive components and compatibility also present with similar relaxant effects remains unknown. This study aims to explore the potential relaxant property, dose-response relationship, and underlying mechanisms of the bioactive component compatibility in SAD. Methods: Network pharmacology was primarily used to identify the bioactive components of SAD and uncover its underlying mechanisms. ASM tension force measuring technique was utilized to verify the relaxant and dose-response effects on in vitro guinea pig ASM. Results: We postulated pseudoephedrine hydrochloride (PH), amygdalin (AM), and diammonium glycyrrhizate (DG) to be the bioactive components of SAD, which could effectively relax ASM in a dose-dependent manner on both acetylcholine-induced and spontaneous contraction. Both PH and AM could lead to DG dose–response curve shift. The regression equation of these three bioactive components was Y = −2.048 × X1 + 0.411 × X2 + 14.052 × X3 (X1, X2, X3 representing PH, AM, and DG, respectively). The underlying mechanisms of these components might be associated with the regulation of smooth muscle contraction. Conclusions: PH, AM, and DG are the bioactive components of SAD, which can relax ASM in a dose–response manner and exert a synergistic effect. Clinically, compatibility of these three bioactive components may serve as a new complementary and alternative treatment for respiratory diseases.
ISSN:2311-8571
DOI:10.4103/wjtcm.wjtcm_64_21