Directionally n-signed graphs-III: The notion of symmetric balance
Let $G=(V, E)$ be a graph. By emph{directional labeling (ord-labeling)} of an edge $x=uv$ of $G$ by an ordered $n$-tuple$(a_1,a_2,...,a_n)$, we mean a labeling of the edge $x$ such thatwe consider the label on $uv$ as $(a_1,a_2,...,a_n)$ in thedirection from $u$ to $v$, and the label on $x$ as$(a_{n...
Gespeichert in:
Veröffentlicht in: | Transactions on combinatorics 2013-12, Vol.2 (4), p.53-62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G=(V, E)$ be a graph. By emph{directional labeling (ord-labeling)} of an edge $x=uv$ of $G$ by an ordered $n$-tuple$(a_1,a_2,...,a_n)$, we mean a labeling of the edge $x$ such thatwe consider the label on $uv$ as $(a_1,a_2,...,a_n)$ in thedirection from $u$ to $v$, and the label on $x$ as$(a_{n},a_{n-1},...,a_1)$ in the direction from $v$ to $u$. Inthis paper, we study graphs, called emph{(n, d)-sigraphs}, inwhich every edge is $d$-labeled by an $n$-tuple$(a_1,a_2,...,a_n)$, where $a_k in {+,-}$, for $1leq k leqn$. In this paper, we give different notion of balance: symmetricbalance in a $(n,d)$-sigraph and obtain some characterizations. |
---|---|
ISSN: | 2251-8657 2251-8665 |