Recognition of Voltage Sag Sources Based on Phase Space Reconstruction and Improved VGG Transfer Learning

The recognition of the voltage sag sources is the basis for formulating a voltage sag governance plan and clarifying the responsibility for the accident. Aiming at the recognition problem of voltage sag sources, a recognition method of voltage sag sources based on phase space reconstruction and impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2019-10, Vol.21 (10), p.999
Hauptverfasser: Pu, Yuting, Yang, Honggeng, Ma, Xiaoyang, Sun, Xiangxun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recognition of the voltage sag sources is the basis for formulating a voltage sag governance plan and clarifying the responsibility for the accident. Aiming at the recognition problem of voltage sag sources, a recognition method of voltage sag sources based on phase space reconstruction and improved Visual Geometry Group (VGG) transfer learning is proposed from the perspective of image classification. Firstly, phase space reconstruction technology is used to transform voltage sag signals, generate reconstruction images of voltage sag, and analyze the intuitive characteristics of different sag sources from reconstruction images. Secondly, combined with the attention mechanism, the standard VGG 16 model is improved to extract the features completely and prevent over-fitting. Finally, VGG transfer learning model uses the idea of transfer learning for training, which improves the efficiency of model training and the recognition accuracy of sag sources. The purpose of the training model is to minimize the cross entropy loss function. The simulation analysis verifies the effectiveness and superiority of the proposed method.
ISSN:1099-4300
1099-4300
DOI:10.3390/e21100999