Efficiency Comparison between Simplified and Advanced Evacuation Analysis Models: A Case Study of Guryong Station, Republic of Korea

Modern subway systems have increased in size and complexity, and this growth presents significant challenges for planners of emergency evacuations. In this study, the effectiveness of the simplified and advanced evacuation analysis methods recommended by the International Maritime Organization (IMO)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2024-09, Vol.14 (9), p.2859
Hauptverfasser: Kim, Hyuncheol, Lee, Seunghyun, Lee, Jaemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern subway systems have increased in size and complexity, and this growth presents significant challenges for planners of emergency evacuations. In this study, the effectiveness of the simplified and advanced evacuation analysis methods recommended by the International Maritime Organization (IMO) are evaluated for Guryong Station in Seoul, South Korea. The simplified evacuation analysis method facilitates rapid assessments by using general parameters, while the advanced evacuation analysis entails performing detailed simulations of human behavior and physical interactions. Our findings indicate that the results of the simplified evacuation analysis method are reasonably close to those of the more time-consuming advanced evacuation analysis method, thereby demonstrating the practical applicability of the former method for conducting initial evacuation safety assessments. Specifically, both the simplified and advanced methods showed a 20% reduction in Total Evacuation Time when tunnel evacuation routes were utilized. This finding demonstrates that the simplified method can produce results comparable to the advanced method, making it a reliable tool for initial assessments and for evaluating alternative strategies to reduce evacuation time. By demonstrating that the simplified evacuation analysis method can yield reliable results, we provide valuable insights for developing smart, resilient cities with efficient emergency-response capabilities.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings14092859