HepParser: An Intelligent Software Program for Deciphering Low-Molecular-Weight Heparin Based on Mass Spectrometry

Low-molecular-weight heparins (LMWHs) are considered to be the most successful carbohydrate-based drugs because of their wide use as anticoagulants in clinics. The efficacy of anticoagulants made by LMWHs mainly depends on the components and structures of LMWHs. Therefore, deciphering the components...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in chemistry 2021-09, Vol.9, p.723149-723149
Hauptverfasser: Wang, Hui, Wang, Yu, Hou, Meijie, Zhang, Chunming, Wang, Yaojun, Guo, Zhendong, Bu, Dongbo, Li, Yan, Huang, Chuncui, Sun, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-molecular-weight heparins (LMWHs) are considered to be the most successful carbohydrate-based drugs because of their wide use as anticoagulants in clinics. The efficacy of anticoagulants made by LMWHs mainly depends on the components and structures of LMWHs. Therefore, deciphering the components and identifying the structures of LMWHs are critical to developing high-efficiency anticoagulants. However, most LMWHs are mixtures of linear polysaccharides which are comprised of several disaccharide repeating units with high similarity, making it extremely challenging to separate and decipher each component in LMWHs. Here, we present a new algorithm named hepParser to decipher the main components of LMWHs automatically and precisely based on the liquid chromatography/mass spectrometry (LC/MS) data. When tested on the general LMWH using hepParser, profiling of the oligosaccharides with different degrees of polymerization (dp’s) was completed with high accuracy within 1 minute. When compared with the results of GlycReSoft on heparan sulfate samples, hepParser achieved more comprehensive and reasonable results automatically.
ISSN:2296-2646
2296-2646
DOI:10.3389/fchem.2021.723149