Optimal Target Assignment with Seamless Handovers for Networked Radars
This paper proposes a binary linear programming formulation for multiple target assignment of a radar network and demonstrates its applicability to obtain optimal solutions using an off-the-shelf mixed-integer linear programming solver. The goal of radar resource scheduling in this paper is to assig...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2019-10, Vol.19 (20), p.4555 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a binary linear programming formulation for multiple target assignment of a radar network and demonstrates its applicability to obtain optimal solutions using an off-the-shelf mixed-integer linear programming solver. The goal of radar resource scheduling in this paper is to assign the maximum number of targets by handing over targets between networked radar systems to overcome physical limitations such as the detection range and simultaneous tracking capability of each radar. To achieve this, time windows are generated considering the relation between each radar and target considering incoming target information. Numerical experiments using a local-scale simulation were performed to verify the functionality of the formulation and a sensitivity analysis was conducted to identify the trend of the results with respect to several parameters. Additional experiments performed for a large-scale (battlefield) scenario confirmed that the proposed formulation is valid and applicable for hundreds of targets and corresponding radar network systems composed of five distributed radars. The performance of the scheduling solutions using the proposed formulation was better than that of the general greedy algorithm as a heuristic approach in terms of objective value as well as the number of handovers. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19204555 |