Existence of infinitely many high energy solutions for a class of fractional Schrödinger systems

In this paper, we investigate a class of nonlinear fractional Schrödinger systems { ( − △ ) s u + V ( x ) u = F u ( x , u , v ) , x ∈ R N , ( − △ ) s v + V ( x ) v = F v ( x , u , v ) , x ∈ R N , where s ∈ ( 0 , 1 ) , N > 2 . Under relaxed assumptions on V ( x ) and F ( x , u , v ) , we show the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-06, Vol.2020 (1), p.1-14, Article 306
Hauptverfasser: Li, Qi, Zhao, Zengqin, Du, Xinsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate a class of nonlinear fractional Schrödinger systems { ( − △ ) s u + V ( x ) u = F u ( x , u , v ) , x ∈ R N , ( − △ ) s v + V ( x ) v = F v ( x , u , v ) , x ∈ R N , where s ∈ ( 0 , 1 ) , N > 2 . Under relaxed assumptions on V ( x ) and F ( x , u , v ) , we show the existence of infinitely many high energy solutions to the above fractional Schrödinger systems by a variant fountain theorem.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-02771-1