Existence of infinitely many high energy solutions for a class of fractional Schrödinger systems
In this paper, we investigate a class of nonlinear fractional Schrödinger systems { ( − △ ) s u + V ( x ) u = F u ( x , u , v ) , x ∈ R N , ( − △ ) s v + V ( x ) v = F v ( x , u , v ) , x ∈ R N , where s ∈ ( 0 , 1 ) , N > 2 . Under relaxed assumptions on V ( x ) and F ( x , u , v ) , we show the...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2020-06, Vol.2020 (1), p.1-14, Article 306 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate a class of nonlinear fractional Schrödinger systems
{
(
−
△
)
s
u
+
V
(
x
)
u
=
F
u
(
x
,
u
,
v
)
,
x
∈
R
N
,
(
−
△
)
s
v
+
V
(
x
)
v
=
F
v
(
x
,
u
,
v
)
,
x
∈
R
N
,
where
s
∈
(
0
,
1
)
,
N
>
2
. Under relaxed assumptions on
V
(
x
)
and
F
(
x
,
u
,
v
)
, we show the existence of infinitely many high energy solutions to the above fractional Schrödinger systems by a variant fountain theorem. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-020-02771-1 |