Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation

Contactless microscale tweezers are highly effective tools for manipulating, patterning, and assembling bioparticles. However, current tweezers are limited in their ability to comprehensively manipulate bioparticles, providing only partial control over the six fundamental motions (three translationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-10, Vol.15 (1), p.9059-11, Article 9059
Hauptverfasser: Shen, Liang, Tian, Zhenhua, Yang, Kaichun, Rich, Joseph, Xia, Jianping, Upreti, Neil, Zhang, Jinxin, Chen, Chuyi, Hao, Nanjing, Pei, Zhichao, Huang, Tony Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Contactless microscale tweezers are highly effective tools for manipulating, patterning, and assembling bioparticles. However, current tweezers are limited in their ability to comprehensively manipulate bioparticles, providing only partial control over the six fundamental motions (three translational and three rotational motions). This study presents a joint subarray acoustic tweezers platform that leverages acoustic radiation force and viscous torque to control the six fundamental motions of single bioparticles. This breakthrough is significant as our manipulation mechanism allows for controlling the three translational and three rotational motions of single cells, as well as enabling complex manipulation that combines controlled translational and rotational motions. Moreover, our tweezers can gradually increase the load on an acoustically trapped cell to achieve controllable cell deformation critical for characterizing cell mechanical properties. Furthermore, our platform allows for three-dimensional (3D) imaging of bioparticles without using complex confocal microscopy by rotating bioparticles with acoustic tweezers and taking images of each orientation using a standard microscope. With these capabilities, we anticipate the JSAT platform to play a pivotal role in various applications, including 3D imaging, tissue engineering, disease diagnostics, and drug testing. The joint subarray acoustic tweezer platform offers 3D translation and rotation of bioparticles, enabling complex manipulation and cell deformation, with applications in tissue engineering, disease diagnostics, and drug testing.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-52686-8