Towards Automated Measurement of As-Built Components Using Computer Vision

Regular inspections during construction work ensure that the completed work aligns with the plans and specifications and that it is within the planned time and budget. This requires frequent physical site observations to independently measure and verify the completion percentage of the construction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-08, Vol.23 (16), p.7110
Hauptverfasser: Perez, Husein, Tah, Joseph H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regular inspections during construction work ensure that the completed work aligns with the plans and specifications and that it is within the planned time and budget. This requires frequent physical site observations to independently measure and verify the completion percentage of the construction progress performed over periods of time. The current computer vision techniques for measuring as-built elements predominantly employ three-dimensional laser scanning or three-dimensional photogrammetry modeling to ascertain the geometric properties of as-built elements on construction sites. Both techniques require data acquisition from several positions and angles to generate sufficient information about the element’s coordinates, making the deployment of these techniques on dynamic construction project sites challenging. This paper proposes a pipeline for automating the measurement of as-built components using artificial intelligence and computer vision techniques. The pipeline requires a single image obtained with a stereo camera system to measure the sizes of selected objects or as-built components. The results in this work were demonstrated by measuring the sizes of concrete walls and columns. The novelty of this work is attributed to the use of a single image and a single target for developing a fully automated computer vision-based method for measuring any given object. The proposed solution is suitable for use in measuring the sizes of as-built components in built assets. It has the potential to be further developed and integrated with building information modelling applications for use on construction projects for progress monitoring.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23167110