A robust role for motor cortex

The role of motor cortex in non-primate mammals remains unclear. More than a century of stimulation, anatomical and electrophysiological studies has implicated neural activity in this region with all kinds of movement. However, following the removal of motor cortex, rats retain most of their adaptiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience 2023-02, Vol.17, p.971980-971980
Hauptverfasser: Lopes, Gonçalo, Nogueira, Joana, Dimitriadis, George, Menendez, Jorge Aurelio, Paton, Joseph J, Kampff, Adam R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of motor cortex in non-primate mammals remains unclear. More than a century of stimulation, anatomical and electrophysiological studies has implicated neural activity in this region with all kinds of movement. However, following the removal of motor cortex, rats retain most of their adaptive behaviors, including previously learned skilled movements. Here we revisit these two conflicting views of motor cortex and present a new behavior assay, challenging animals to respond to unexpected situations while navigating a dynamic obstacle course. Surprisingly, rats with motor cortical lesions show clear impairments facing an unexpected collapse of the obstacles, while showing no impairment with repeated trials in many motor and cognitive metrics of performance. We propose a new role for motor cortex: extending the robustness of sub-cortical movement systems, specifically to unexpected situations demanding rapid motor responses adapted to environmental context. The implications of this idea for current and future research are discussed.
ISSN:1662-4548
1662-453X
1662-453X
DOI:10.3389/fnins.2023.971980