Preharvest Durum Wheat Yield, Protein Content, and Protein Yield Estimation Using Unmanned Aerial Vehicle Imagery and Pléiades Satellite Data in Field Breeding Experiments

Unmanned aerial vehicles (UAVs) are extensively used to gather remote sensing data, offering high image resolution and swift data acquisition despite being labor-intensive. In contrast, satellite-based remote sensing, providing sub-meter spatial resolution and frequent revisit times, could serve as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-01, Vol.16 (3), p.559
Hauptverfasser: Ganeva, Dessislava, Roumenina, Eugenia, Dimitrov, Petar, Gikov, Alexander, Bozhanova, Violeta, Dragov, Rangel, Jelev, Georgi, Taneva, Krasimira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unmanned aerial vehicles (UAVs) are extensively used to gather remote sensing data, offering high image resolution and swift data acquisition despite being labor-intensive. In contrast, satellite-based remote sensing, providing sub-meter spatial resolution and frequent revisit times, could serve as an alternative data source for phenotyping. In this study, we separately evaluated pan-sharpened Pléiades satellite imagery (50 cm) and UAV imagery (2.5 cm) to phenotype durum wheat in small-plot (12 m × 1.10 m) breeding trials. The Gaussian process regression (GPR) algorithm, which provides predictions with uncertainty estimates, was trained with spectral bands and а selected set of vegetation indexes (VIs) as independent variables. Grain protein content (GPC) was better predicted with Pléiades data at the growth stage of 20% of inflorescence emerged but with only moderate accuracy (validation R2: 0.58). The grain yield (GY) and protein yield (PY) were better predicted using UAV data at the late milk and watery ripe growth stages, respectively (validation: R2 0.67 and 0.62, respectively). The cumulative VIs (the sum of VIs over the available images within the growing season) did not increase the accuracy of the models for either sensor. When mapping the estimated parameters, the spatial resolution of Pléiades revealed certain limitations. Nevertheless, our findings regarding GPC suggested that the usefulness of pan-sharpened Pléiades images for phenotyping should not be dismissed and warrants further exploration, particularly for breeding experiments with larger plot sizes.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16030559