Assessment of AquaCrop model in the simulation of durum wheat (Triticum aestivum L.) growth and yield under different water regimes in Tadla- Morocco

Simulation models that clarify the effects of water on crop yield are useful tools for improving farm level water management and optimizing water use efficiency. In this study, AquaCrop was evaluated for Karim genotype which is the main durum winter wheat (Triticum aestivum L.) practiced in Tadla. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue Marocaines des sciences agronomiques et vétérinaires 2017-09, Vol.5 (3), p.222-230
Hauptverfasser: Bassou BOUAZZAM, Mohammed KARROU, Mohamed BOUTFIRASS, Abdeljabar BAHRI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simulation models that clarify the effects of water on crop yield are useful tools for improving farm level water management and optimizing water use efficiency. In this study, AquaCrop was evaluated for Karim genotype which is the main durum winter wheat (Triticum aestivum L.) practiced in Tadla. AquaCrop is based on the water-driven growth module, in that transpiration is converted into biomass through a water productivity parameter. The model was calibrated on data from a full irrigation treatment in 2014/15 and validated on other stressed and unstressed treatments including rain-fed conditions in 2014/15 and 2015/16. Results showed that the model provided excellent simulations of canopy cover, biomass and grain yield. Overall, the relationship between observed and modeled wheat grain yield for all treatments combined produced an R2 of 0.79, a mean squared error of 1.01 t ha-1 and an efficiency coefficient of 0.68. The model satisfactory predicted the trend of soil water reserve. Consequently, AquaCrop can be a valuable tool for simulating wheat grain yield in Tadla plain, particularly considering the fact that the model requires a relatively small number of input data. However, the performance of the model has to be fine-tuned under a wider range of conditions.
ISSN:2028-991X
2550-4401