Processing Variants in Medium-Mn Steels
This paper highlights some recent efforts to extend the use of medium-Mn steels for applications other than intercritically batch-annealed steels with exceptional ductility (and strengths in the range of about 1000 MPa). These steels are shown to enable a range of promising properties. In hot-stampi...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2019-07, Vol.9 (7), p.771 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper highlights some recent efforts to extend the use of medium-Mn steels for applications other than intercritically batch-annealed steels with exceptional ductility (and strengths in the range of about 1000 MPa). These steels are shown to enable a range of promising properties. In hot-stamping application concepts, elevated Mn concentration helps to stabilize austenite and to provide a range of attractive property combinations, and also reduces the processing temperatures and likely eliminates the need for press quenching. The “double soaking” concept also provides a wide range of attractive mechanical property combinations that may be applicable in cold-forming applications, and could be implemented in continuous annealing and/or continuous galvanizing processes where Zn-coating would typically represent an additional austempering step. Quenching and partitioning of steels with elevated Mn concentrations have exhibited very high strengths, with attractive tensile ductility; and medium-Mn steels have been successfully designed for quenching and partitioning using room temperature as the quench temperature, thereby effectively decoupling the quenching and partitioning steps. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met9070771 |