Design of Hollow Porous P-NiCo2O4@Co3O4 Nanoarray and Its Alkaline Aqueous Zinc-Ion Battery Performance

Alkaline aqueous zinc-ion batteries possess a wider potential window than those in mildly acidic systems; they can achieve high energy density and are expected to become the next generation of energy storage devices. In this paper, a hollow porous P-NiCo2O4@Co3O4 nanoarray is obtained by ion etching...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-11, Vol.24 (21), p.15548
Hauptverfasser: Liang, Zhe, Lv, Chenmeng, Wang, Luyao, Li, Xiran, Cheng, Shiwen, Huo, Yuqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alkaline aqueous zinc-ion batteries possess a wider potential window than those in mildly acidic systems; they can achieve high energy density and are expected to become the next generation of energy storage devices. In this paper, a hollow porous P-NiCo2O4@Co3O4 nanoarray is obtained by ion etching and the calcination and phosphating of ZiF-67, which is directly grown on foam nickel substrate, as a precursor. It exhibits excellent performance as a cathode material for alkaline aqueous zinc-ion batteries. A high discharge specific capacity of 225.3 mAh g−1 is obtained at 1 A g−1 current density, and it remains 81.9% when the current density is increased to 10 A g−1. After one thousand cycles of charging and discharging at 3 A g−1 current density, the capacity retention rate is 88.8%. Even at an excellent power density of 25.5 kW kg−1, it maintains a high energy density of 304.5 Wh kg−1. It is a vital, promising high-power energy storage device for large-scale applications.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms242115548