Associated Gas Recovery Integrated with Solar Power for Produced Water Treatment: Techno-Economic and Environmental Impact Analyses
Excess associated gas from unconventional wells is typically flared while excess produced water is injected underground. In this work, flare gas recovery is integrated with produced water desalination and a solar pre-heater. The solar module with a beam splitter preheats the produced water. Aspen Pl...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2024-11, Vol.17 (22), p.5794 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excess associated gas from unconventional wells is typically flared while excess produced water is injected underground. In this work, flare gas recovery is integrated with produced water desalination and a solar pre-heater. The solar module with a beam splitter preheats the produced water. Aspen Plus process modeling, economic analysis, and greenhouse gas analysis were performed. The solar flare gas recovery desalination (Solar-FGRD) process can conserve water resources and reduce the brine injection by 77%. The accompanying solar farm results in excess solar electricity for exporting to the grid. The process burner combustion efficiency (CE) is 99.8%, with a destruction and removal efficiency (DRE) of 99.99% for methane as opposed to a flare CE of 80–98% (and a methane DRE of 91–98%). The greenhouse gas (GHG) emissions for CO2 and methane, in terms of CO2 equivalent (CO2e), can be reduced by 45% for US North Dakota and Texas flaring and 13% for North Sea flaring by employing the Solar-FGRD process. Comprehensive financial analysis demonstrates the financial–economic feasibility of the investment project with or without tax credits. Best-case and worst-case scenarios provide a realistic range that investors can consider before making investment decisions. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17225794 |