Radial Basis Function Neural Network and Feedforward Active Disturbance Rejection Control of Permanent Magnet Synchronous Motor
A composite control strategy is proposed to improve the position-tracking performance and anti-interference capabilities of permanent magnet synchronous motors (PMSMs). This strategy integrates an active disturbance rejection controller (ADRC) and a radial basis function neural network (RBFNN) with...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-09, Vol.14 (17), p.7930 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A composite control strategy is proposed to improve the position-tracking performance and anti-interference capabilities of permanent magnet synchronous motors (PMSMs). This strategy integrates an active disturbance rejection controller (ADRC) and a radial basis function neural network (RBFNN) with feedforward control. Initially, the flexibility and robustness of the ADRC are utilized in the position loop control. Subsequently, the parameters of the extended state observer (ESO) within the ADRC are optimized, benefiting from the fast convergence speed and optimal approximation provided by the RBFNN. To further enhance the dynamic tracking performance, a differential feedforward link is introduced between the desired speed and the output signal. The simulation and experimental results demonstrate that when the expected electrical angle inputs are sinusoidal and pulse signals, the incorporation of the feedforward link and the adjustment of parameters in the ADRC lead to improved position-tracking capabilities and greater adaptability to load disturbances. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14177930 |