Green biosynthesis and characterization of magnetic iron oxide (Fe₃O₄) nanoparticles using seaweed (Sargassum muticum) aqueous extract

The synthesis of nanoparticles has become a matter of great interest in recent times due to their various advantageous properties and applications in a variety of fields. The exploitation of different plant materials for the biosynthesis of nanoparticles is considered a green technology because it d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2013-05, Vol.18 (5), p.5954-5964
Hauptverfasser: Mahdavi, Mahnaz, Namvar, Farideh, Ahmad, Mansor Bin, Mohamad, Rosfarizan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis of nanoparticles has become a matter of great interest in recent times due to their various advantageous properties and applications in a variety of fields. The exploitation of different plant materials for the biosynthesis of nanoparticles is considered a green technology because it does not involve any harmful chemicals. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (BS, Sargassum muticum) water extract containing sulphated polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. The structural and properties of the Fe3O4-NPs were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), vibrating sample magnetometry (VSM) and transmission electron microscopy. The average particle diameter as determined by TEM was found to be 18 ± 4 nm. X-ray diffraction showed that the nanoparticles are crystalline in nature, with a cubic shape. The nanoparticles synthesized through this biosynthesis method can potentially useful in various applications.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules18055954