A novel sparse recovery‐based space‐time adaptive processing algorithm based on gridless sparse Bayesian learning for non‐sidelooking airborne radar

Non‐sidelooking airborne radar encounters significant non‐stationary and heterogeneous clutter environments, resulting in a severe shortage of samples. Sparse recovery‐based space‐time adaptive processing (SR‐STAP) methods can achieve good clutter suppression performance with limited samples. Noneth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET Radar, Sonar & Navigation Sonar & Navigation, 2023-09, Vol.17 (9), p.1380-1390
Hauptverfasser: Cui, Weichen, Wang, Tong, Wang, Degen, Zhang, Xinying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non‐sidelooking airborne radar encounters significant non‐stationary and heterogeneous clutter environments, resulting in a severe shortage of samples. Sparse recovery‐based space‐time adaptive processing (SR‐STAP) methods can achieve good clutter suppression performance with limited samples. Nonetheless, grid‐based SR‐STAP algorithms encounter off‐grid effects in non‐sidelooking arrays, which can severely degrade the clutter suppression performance. In this study, the authors propose a novel gridless SR‐STAP method in the continuous spatial‐temporal domain to address the issue of off‐grid effects. Inspired by the fact that sparse Bayesian learning (SBL) framework implicitly performs a structured covariance matrix estimation, the authors reparameterise its cost function to directly estimate the block‐Toeplitz structured matrix from the measurements in a gridless manner. Since the proposed cost function is non‐convex, we utilise a majorisation‐minimisation‐based iterative procedure to estimate the clutter covariance matrix. Finally, using the standard concept of semidefinite programming, the authors derive a convex gridless implementation of the SBL cost function for uniformly sampled radar systems. Extensive simulation experiments demonstrate the exceptional clutter suppression and target detection performance of the proposed algorithm.
ISSN:1751-8784
1751-8792
DOI:10.1049/rsn2.12427