Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method

Synthesis of carbon nanotubes (CNTs) was carried out using methane as a carbon source via the chemical vapor deposition (CVD) method. A thin stainless-steel foil was used as catalyst for CNT growth. Our results revealed that pretreatment step of the stainless-steel foil as a catalyst plays an import...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-12, Vol.11 (1), p.50
Hauptverfasser: Huynh, Thuan Minh, Nguyen, Sura, Nguyen, Ngan Thi Kim, Nguyen, Huan Manh, Do, Noa Uy Pham, Nguyen, Danh Cong, Nguyen, Luong Huu, Nguyen, Cattien V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis of carbon nanotubes (CNTs) was carried out using methane as a carbon source via the chemical vapor deposition (CVD) method. A thin stainless-steel foil was used as catalyst for CNT growth. Our results revealed that pretreatment step of the stainless-steel foil as a catalyst plays an important role in CNT formation. In our experiments, a catalyst pretreatment temperature of 850 °C or 950 °C was found to facilitate the creation of Fe- and Cr-rich particles are active sites on the foil surface, leading to CNT formation. It is noted that the size of metallic particles after pretreatment is closely related to the diameter of the synthesized CNTs. It is interesting that a shorter catalyst pretreatment brings the growth of semiconducting typed CNTs while a longer pretreatment creates metallic CNTs. This finding might lead to a process for improving the quality of CNTs grown on steel foil as catalyst.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11010050