Forecasting Multivariate Chaotic Processes with Precedent Analysis

Predicting the state of a dynamic system influenced by a chaotic immersion environment is an extremely difficult task, in which the direct use of statistical extrapolation computational schemes is infeasible. This paper considers a version of precedent forecasting in which we use the aftereffects of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation 2021-10, Vol.9 (10), p.110
Hauptverfasser: Musaev, Alexander, Makshanov, Andrey, Grigoriev, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting the state of a dynamic system influenced by a chaotic immersion environment is an extremely difficult task, in which the direct use of statistical extrapolation computational schemes is infeasible. This paper considers a version of precedent forecasting in which we use the aftereffects of retrospective observation segments that are similar to the current situation as a forecast. Furthermore, we employ the presence of relatively stable correlations between the parameters of the immersion environment as a regularizing factor. We pay special attention to the choice of similarity measures or distances used to find analog windows in arrays of retrospective multidimensional observations.
ISSN:2079-3197
2079-3197
DOI:10.3390/computation9100110