Edge Computing-Based VANETs’ Anonymous Message Authentication
Vehicular Ad-hoc Networks (VANETs) have high requirements for real-time data processing and security of message authentication. In order to solve the computing power asymmetry between vehicles and road side units (RSUs) in VANETs under high-density traffic, accelerate the processing speed of message...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2022-12, Vol.14 (12), p.2662 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vehicular Ad-hoc Networks (VANETs) have high requirements for real-time data processing and security of message authentication. In order to solve the computing power asymmetry between vehicles and road side units (RSUs) in VANETs under high-density traffic, accelerate the processing speed of message authentication, and solve the problems of high computational overhead and long message authentication time caused by the use of bilinear pairing encryption technology in similar message-batch-authentication schemes, we propose introducing the concept of edge computing (EC) into VANETs and using idle nodes’ resources to assist the RSU in quickly authenticating messages to achieve computing power load balancing under multiple traffic flows. We propose introducing the idea of edge computing (EC) into VANETs and using idle nodes’ resources to assist RSUs in quickly authenticating messages. This scheme performs two identity-based message authentications based on the identity signature constructed by elliptic curve cryptography (ECC). One of them is the batch authentication of the vehicle sending messages by the RSU-authenticated vehicles with free resources, as temporary edge computing nodes (TENs), and the other is the authentication of the temporary TEN messages by the fixed-edge-node RSUs. The resources of the TEN are used to reduce the computational burden of RSUs and message authentication time, thereby improving the efficiency of system authentication of messages. We performed a security analysis of the scheme to prove its security properties and compared it with other schemes in terms of performance. The experimental results show that our scheme has a transmission overhead of 2400 bytes when there are four TENs, and the number of verification message requests reaches 20, which outperforms other methods. The gap will be more evident as the numbers of TEN and message verification requests increase. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym14122662 |