Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica

The ability of catecholamines to stimulate bacterial growth was first demonstrated just over a decade ago. Little is still known however, concerning the nature of the putative bacterial adrenergic and/or dopaminergic receptor(s) to which catecholamines (norepinephrine, epinephrine and dopamine) may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC microbiology 2007-01, Vol.7 (1), p.8-8, Article 8
Hauptverfasser: Freestone, Primrose P E, Haigh, Richard D, Lyte, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of catecholamines to stimulate bacterial growth was first demonstrated just over a decade ago. Little is still known however, concerning the nature of the putative bacterial adrenergic and/or dopaminergic receptor(s) to which catecholamines (norepinephrine, epinephrine and dopamine) may bind and exert their effects, or even whether the binding properties of such a receptor are similar between different species. Use of specific catecholamine receptor antagonists revealed that only alpha, and not beta, adrenergic antagonists were capable of blocking norepinephrine and epinephrine-induced growth, while antagonism of dopamine-mediated growth was achieved with the use of a dopaminergic antagonist. Both adrenergic and dopaminergic antagonists were highly specific in their mechanism of action, which did not involve blockade of catecholamine-facilitated iron-acquisition. Use of radiolabeled norepinephrine suggested that the adrenergic antagonists could be acting by inhibiting catecholamine uptake. The present data demonstrates that the ability of a specific pathogen to respond to a particular hormone is dependent upon the host anatomical region in which the pathogen causes disease as well as the neuroanatomical specificity to which production of the particular hormone is restricted; and that both are anatomically coincidental to each other. As such, the present report suggests that pathogens with a high degree of exclusivity to the gastrointestinal tract have evolved response systems to neuroendocrine hormones such as norepinephrine and dopamine, but not epinephrine, which are found with the enteric nervous system.
ISSN:1471-2180
1471-2180
DOI:10.1186/1471-2180-7-8