Selective Cytotoxicity of Piperine Over Multidrug Resistance Leukemic Cells
Multidrug resistance (MDR) is the main challenge in the treatment of chronic myeloid leukemia (CML), and P-glycoprotein (P-gp) overexpression is an important mechanism involved in this resistance process. However, some compounds can selectively affect MDR cells, inducing collateral sensitivity (CS),...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2021-02, Vol.26 (4), p.934 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multidrug resistance (MDR) is the main challenge in the treatment of chronic myeloid leukemia (CML), and P-glycoprotein (P-gp) overexpression is an important mechanism involved in this resistance process. However, some compounds can selectively affect MDR cells, inducing collateral sensitivity (CS), which may be dependent on P-gp. The aim of this study was to investigate the effect of piperine, a phytochemical from black pepper, on CS induction in CML MDR cells, and the mechanisms involved. The results indicate that piperine induced CS, being more cytotoxic to K562-derived MDR cells (Lucena-1 and FEPS) than to K562, the parental CML cell. CS was confirmed by analysis of cell metabolic activity and viability, cell morphology and apoptosis. P-gp was partially required for CS induction. To investigate a P-gp independent mechanism, we analyzed the possibility that poly (ADP-ribose) polymerase-1 (PARP-1) could be involved in piperine cytotoxic effects. It was previously shown that only MDR FEPS cells present a high level of 24 kDa fragment of PARP-1, which could protect these cells against cell death. In the present study, piperine was able to decrease the 24 kDa fragment of PARP-1 in MDR FEPS cells. We conclude that piperine targets selectively MDR cells, inducing CS, through a mechanism that might be dependent or not on P-gp. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26040934 |