Stromal Vascular Fraction and Amniotic Epithelial Cells: Preclinical and Clinical Relevance in Musculoskeletal Regenerative Medicine
Musculoskeletal regenerative medicine is mainly based on the use of cell therapy to heal damaged tissues such as bone, cartilage, and tendons. Throughout the years, different cell types have been employed for the treatment of musculoskeletal diseases, in particular, mesenchymal stem cells (MSCs) der...
Gespeichert in:
Veröffentlicht in: | Stem cells international 2021, Vol.2021, p.6632052-22 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Musculoskeletal regenerative medicine is mainly based on the use of cell therapy to heal damaged tissues such as bone, cartilage, and tendons. Throughout the years, different cell types have been employed for the treatment of musculoskeletal diseases, in particular, mesenchymal stem cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ADSCs). Though the results of these literature studies have been encouraging, there are some limitations, especially on long-term results. Recently, some interest has shifted towards new cell types such as the stromal vascular fraction (SVF) and amniotic endothelial cells (AECs). The aim of the present literature review is to evaluate preclinical and clinical studies that used SVF and AECs for musculoskeletal tissue regeneration. Forty-eight preclinical and clinical studies, performed in the last 10 years, were identified. Both SVF and AECs, injected or implanted with or without scaffolds, were shown to be valid alternatives, and in some ways superior, to ADSCs and BMSCs, being able to differentiate towards osteogenic, chondrogenic, and tenogenic lineages, and to promote cell and tissue regenerative potential. The use of SVF and AECs could represent a new regenerative treatment in several musculoskeletal pathologies, solving the problem of cell expansion in vitro. |
---|---|
ISSN: | 1687-966X 1687-9678 1687-9678 |
DOI: | 10.1155/2021/6632052 |