Polystyrene microplastics induce anxiety via HRAS derived PERK-NF-κB pathway
[Display omitted] •PS-MPs induced anxiety-like behavior and accumulated in the brain of mice.•PS-MPs-induced toxicity was related to inflammation pathways.•HRAS was identified as a key factor in PS-MPs induced pro-inflammatory response.•HRAS induced PERK-NF-κB pathway played a significant role in PS...
Gespeichert in:
Veröffentlicht in: | Environment international 2024-03, Vol.185, p.108543-108543, Article 108543 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•PS-MPs induced anxiety-like behavior and accumulated in the brain of mice.•PS-MPs-induced toxicity was related to inflammation pathways.•HRAS was identified as a key factor in PS-MPs induced pro-inflammatory response.•HRAS induced PERK-NF-κB pathway played a significant role in PS-MPs induced toxicity.
Exposure to environmentally hazardous substances is recognized as a significant risk factor for neurological associated disorders. Among these substances, polystyrene microplastics (PS-MPs), widely utilized in various consumer products, have been reported to exhibit neurotoxicity. However, the potential association of PS-MPs with abnormal anxiety behaviors, along with the underlying molecular mechanisms and key proteins involved, remains insufficiently explored. Here, we delineated the potential mechanisms of PS-MPs-induced anxiety through proteomics and molecular investigations. We characterized the PS-MPs, observed their accumulation in the brain, leading to anxiety-like behavior in mice, which is correlated with microglia activation and pro-inflammatory response. Consistent with these findings, our studies on BV2 microglia cells showed that PS-MPs activated NF-κB-mediated inflammation resulting in the upregulation of pro-inflammatory cytokines such as TNFα and IL-1β. Of particular significance, HRAS was identified as a key factor in the PS-MPs induced pro-inflammatory response through whole proteomics analysis, and knockdown of H-ras effectively inhibited PS-MPs induced PERK-NF-κB activation and associated pro-inflammatory response in microglia cells. Collectively, our findings highlight that PS-MPs induce anxiety of mice via the activation of the HRAS-derived PERK-NF-κB pathway in microlglia. Our results contribute valuable insights into the molecular mechanisms of PS-MPs-induced anxiety, and may offer implications for addressing neurotoxicity and prevention the adverse effects of environmentally hazardous substances, including microplastics. |
---|---|
ISSN: | 0160-4120 1873-6750 |
DOI: | 10.1016/j.envint.2024.108543 |