Research on deep reinforcement learning in Internet of vehicles edge computing based on Quasi-Newton method

To address the issues of ineffective task offloading decisions caused by multitasking and resource constraints in vehicular networks, the Quasi-Newton method deep reinforcement learning dual-phase online offloading (QNRLO) algorithm was proposed. The algorithm was designed by initially incorporating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tongxin Xuebao 2024-05, Vol.45, p.90-100
Hauptverfasser: ZHANG Jianwu, LU Zetao, ZHANG Qianhua, ZHAN Ming
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address the issues of ineffective task offloading decisions caused by multitasking and resource constraints in vehicular networks, the Quasi-Newton method deep reinforcement learning dual-phase online offloading (QNRLO) algorithm was proposed. The algorithm was designed by initially incorporating batch normalization techniques to optimize the training process of deep neural networks. Subsequently, optimization was performed using the Quasi-Newton method to effectively approximate the optimal solution. Through this dual-stage optimization, performance was significantly enhanced under conditions of multitasking and dynamic wireless channels, improving computational efficiency. By introducing Lagrange multipliers and a reconstructed dual function, the non-convex optimization problem was transformed into a convex optimization problem of the dual function, ensuring the global optimality of the algorithm. Additionally, system transmission time allocation in the vehicular network model was considered, enhancing t
ISSN:1000-436X