Arterial Blood Oxygen Saturation and Its Dynamics Due to the Environmental Electromagnetic Conditions

Background. As widely known, the geomagnetic field intensity does change abruptly during global magnetic disturbances specified as magnetic storms. Those are due to the changing solar activity influencing solar wind parameters and the state of the magnetosphere. This chain of physical processes with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Innovative biosystems and bioengineering 2019-05, Vol.3 (2), p.64-69
Hauptverfasser: Mamilov, Sergii, Gorgo, Yuriy, Esman, Sergii, Vacziova, Magdalena, Prigancova, Alina, Pet'ko, Branislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. As widely known, the geomagnetic field intensity does change abruptly during global magnetic disturbances specified as magnetic storms. Those are due to the changing solar activity influencing solar wind parameters and the state of the magnetosphere. This chain of physical processes with their origin in the Sun is described as the space weather. To understand the space weather effects in the environment is most important since those are related to the biosphere as well. Namely, the low-frequency geomagnetic field dy­namics, linked with space weather conditions, seems to be a quite probable factor influencing both the pathological and functional state of a human being and biological objects, in general, during magnetic storms. Objective. In this study, the dynamics of an oxygen saturation parameter in human arterial blood is analyzed with regard to extreme space weather when magnetic storms occur. Methods. Experimental setup for measuring changes of the relative concentration of oxyhemoglobin in arterial blood (saturation of arterial blood with oxygen), is a pulse oximeter-spectrophotometer. Measurements were carried out using pulse-oximetry sensor covering the first phalanx of a finger, and laser radiation was directed to the side of the second phalanx. The He-Ne laser with a wavelength of 632 nm was used as a source of electromagnetic radiation. Observational values of the geomagnetic field with a high-time resolution (1-sec) are obtained from the midlatitude Hurbanovo Geomagnetic Observatory (Slovak Republic). Deviations/oscillation ranges regarding the average value were calculated at all frequencies, and low pass filter was applied from the "Seewave-1.7.6" package (F-filter) for frequencies of 0.1, 0.5, 0.01, 0.05, 0.001, and 0.0001 Hz. The data on magnetic storms for 2015 were derived from the file of Kyoto Geomagnetic Center which indicated the dates and the amplitudes of magnetic storms on the Earth. Results. The following variables were analyzed: the average arterial oxygen saturation at the patient’s rest, peak-to-peak value of saturation, changes in the average oxygen saturation under laser radiation. A group of 33 persons was daily monitored from March 30, 2015, to May 25, 2015. In the presence of Earth's magnetic field disturbances, the average value of arterial oxygen saturation at the state of rest in 29 persons out of 33 was 93.9 ± 0.9%, peak-to-peak value of oxygen was 1.25 ± 0.24%, and the change in the average arterial oxygen
ISSN:2616-177X
2616-177X
DOI:10.20535/ibb.2019.3.2.158175