Logarithm of a Non-Singular Complex Matrix via the Dunford–Taylor Integral

Using the Dunford–Taylor integral and a representation formula for the resolvent of a non-singular complex matrix, we find the logarithm of a non-singular complex matrix applying the Cauchy’s residue theorem if the matrix eigenvalues are known or a circuit integral extended to a curve surrounding th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2022-02, Vol.11 (2), p.51
Hauptverfasser: Caratelli, Diego, Ricci, Paolo Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the Dunford–Taylor integral and a representation formula for the resolvent of a non-singular complex matrix, we find the logarithm of a non-singular complex matrix applying the Cauchy’s residue theorem if the matrix eigenvalues are known or a circuit integral extended to a curve surrounding the spectrum. The logarithm function that can be found using this technique is essentially unique. To define a version of the logarithm with multiple values analogous to the one existing in the case of complex variables, we introduce a definition for the argument of a matrix, showing the possibility of finding equations similar to those of the scalar case. In the last section, numerical experiments performed by the first author, using the computer algebra program Mathematica©, confirm the effectiveness of this methodology. They include the logarithm of matrices of the fifth, sixth and seventh order.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms11020051