A Modified Newmark Method for Calculating Permanent Displacement of Seismic Slope considering Dynamic Critical Acceleration
Newmark permanent displacement is an important index for evaluating seismic slope stability, which has been widely used in recent years. The traditional Newmark sliding method assumes that the critical acceleration is constant but does not consider the inhomogeneity and dynamic reduction process of...
Gespeichert in:
Veröffentlicht in: | Advances in Civil Engineering 2019, Vol.2019 (2019), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Newmark permanent displacement is an important index for evaluating seismic slope stability, which has been widely used in recent years. The traditional Newmark sliding method assumes that the critical acceleration is constant but does not consider the inhomogeneity and dynamic reduction process of shear strength on the sliding surface, presumably leading to underestimation of the permanent displacement. In this paper, this problem is analyzed, and a new method for calculating permanent displacement of seismic slope considering dynamic critical acceleration is proposed, in which the Monte Carlo simulation is used. Example calculations indicate that this approach permits to show the dropping cohesion and the dynamic critical acceleration of the slide block during the earthquake time history. The improved method for calculating seismic slope permanent displacement presented in this paper solves the problem that the calculated value from the Newmark sliding method is smaller than the real value and is a useful improvement. |
---|---|
ISSN: | 1687-8086 1687-8094 |
DOI: | 10.1155/2019/9782515 |