Quadrupedal water launch capability demonstrated in small Late Jurassic pterosaurs
Pterosaurs thrived in and around water for 160 + million years but their take-off from water is poorly understood. A purportedly low floating position and forward centre of gravity barred pterosaurs from a bird-like bipedal running launch. Quadrupedal water launch similar to extant water-feeding bir...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-04, Vol.12 (1), p.6540-6540, Article 6540 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pterosaurs thrived in and around water for 160 + million years but their take-off from water is poorly understood. A purportedly low floating position and forward centre of gravity barred pterosaurs from a bird-like bipedal running launch. Quadrupedal water launch similar to extant water-feeding birds and bats has been proposed for the largest pterosaurs, such as
Anhanguera
and
Quetzalcoatlus
. However, quadrupedal water launch has never been demonstrated in smaller pterosaurs, including those living around the Tethys Sea in the Late Jurassic Solnhofen Lagoon. Using Laser-Stimulated Fluorescence, we singled out aurorazhdarchid specimen MB.R.3531 that alone preserved specific soft tissues among more than a dozen well-preserved Solnhofen pterosaur specimens. These soft tissues pertain to primary propulsive contact surfaces needed for quadrupedal water launch (pedal webbing and soft tissues from an articulated forelimb) that permit robust calculations of its dynamic feasibility without the need to make assumptions about contact areas. A first-principles-based dynamics model of MB.R.3531 reveals that quadrupedal water launch was theoretically feasible and that webbed feet significantly impacted launch performance. Three key factors limiting water launch performance in all pterosaurs are identified, providing a foundation for understanding water launch evolution: available propulsive contact area, forelimb extension range and forelimb extension power about the shoulder. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-10507-2 |