d-dimensional SYK, AdS loops, and 6j symbols

A bstract We study the 6 j symbol for the conformal group, and its appearance in three seemingly unrelated contexts: the SYK model, conformal representation theory, and perturbative amplitudes in AdS. The contribution of the planar Feynman diagrams to the three-point function of the bilinear singlet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2019-03, Vol.2019 (3), p.1-57, Article 52
Hauptverfasser: Liu, Junyu, Perlmutter, Eric, Rosenhaus, Vladimir, Simmons-Duffin, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We study the 6 j symbol for the conformal group, and its appearance in three seemingly unrelated contexts: the SYK model, conformal representation theory, and perturbative amplitudes in AdS. The contribution of the planar Feynman diagrams to the three-point function of the bilinear singlets in SYK is shown to be a 6 j symbol. We generalize the computation of these and other Feynman diagrams to d dimensions. The 6 j symbol can be viewed as the crossing kernel for conformal partial waves, which may be computed using the Lorentzian inversion formula. We provide closed-form expressions for 6 j symbols in d = 1, 2, 4. In AdS, we show that the 6 j symbol is the Lorentzian inversion of a crossing-symmetric tree-level exchange amplitude, thus efficiently packaging the doubletrace OPE data. Finally, we consider one-loop diagrams in AdS with internal scalars and external spinning operators, and show that the triangle diagram is a 6 j symbol, while one-loop n -gon diagrams are built out of 6 j symbols.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP03(2019)052