Comparative Transcriptome Analysis Highlights the Role of NlABCG14 in the Honeydew Production of Virulent Brown Planthoppers ( Nilaparvata lugens Stål) to Resistant Rice Variety
Brown planthoppers (BPHs, Stål) are a major threat to rice cultivation in Asia, necessitating the development of pest-resistant varieties for effective management. However, the adaptability of BPHs has resulted in the development of virulent populations, such as biotype Y BPHs, which exhibit signifi...
Gespeichert in:
Veröffentlicht in: | Insects (Basel, Switzerland) Switzerland), 2024-12, Vol.15 (12), p.992 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brown planthoppers (BPHs,
Stål) are a major threat to rice cultivation in Asia, necessitating the development of pest-resistant varieties for effective management. However, the adaptability of BPHs has resulted in the development of virulent populations, such as biotype Y BPHs, which exhibit significant virulence against the rice variety YHY15 that harbors the resistance gene
. The various response mechanisms of BPH populations to resistant rice varieties are critical yet underexplored. Via RNA sequencing, the present study identified distinct transcriptional profiles in avirulent (biotype 1) and virulent (biotype Y) BPH nymphs both before and after feeding on YHY15 rice. Our findings revealed differential expression patterns of gene clusters involved in protein synthesis, hydrolysis, fatty acid biosynthesis, metabolism, cuticle composition, and translocation. Further analysis elucidated changes in the expression of genes associated with longevity and structural components of cuticles, highlighting specific disruptions in both biotype 1 and biotype Y BPHs. Moreover, the two biotypes showed differences in the expression level of genes involved in ATP-binding cassette (ABC) transporters. A functional assessment of ABC transporter genes revealed a role of
in the honeydew production of biotype Y BPHs to YHY15 rice, without impacting their survival and developmental dynamics. These insights deepen our understanding of the mechanisms of virulent BPHs response to resistant rice varieties and highlight potential targets for improving pest management strategies. |
---|---|
ISSN: | 2075-4450 2075-4450 |
DOI: | 10.3390/insects15120992 |