A model for temperature dependent resistivity of metallic superlattices

The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, ρ(T) = ρo + aT, which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2015-11, Vol.5 (11), p.117131-117131-8
Hauptverfasser: Uba, J. I., Ekpunobi, A. J., Ekwo, P. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, ρ(T) = ρo + aT, which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression from the standard magnetoresistance equation, in which the second term, a Bragg scattering factor, is a correction to the usual model involving magnon and phonon scatterings. Fitting the model to Fe/Cr data from literature shows that Bragg scattering is dominant at T < 50 K and magnon and phonon coefficients are independent of experiment conditions, with typical values of 4.7 × 10−4 μΩcmK−2 and −8 ± 0.7 × 10−7μΩcmK−3. From the linear atomic chain model, the dielectric constant εq,ω=8.33×10−2 at Debye frequency for all materials and acoustic speed and Thomas – Fermi screening length are pressure dependent with typical values of 1.53 × 104 m/s and 1.80 × 109 m at 0.5 GPa pressure for an Fe/Cr structure.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4936128