Achieving Semantic Consistency for Multilingual Sentence Representation Using an Explainable Machine Natural Language Parser (MParser)

In multilingual semantic representation, the interaction between humans and computers faces the challenge of understanding meaning or semantics, which causes ambiguity and inconsistency in heterogeneous information. This paper proposes a Machine Natural Language Parser (MParser) to address the seman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-12, Vol.11 (24), p.11699
Hauptverfasser: Qin, Peng, Tan, Weiming, Guo, Jingzhi, Shen, Bingqing, Tang, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In multilingual semantic representation, the interaction between humans and computers faces the challenge of understanding meaning or semantics, which causes ambiguity and inconsistency in heterogeneous information. This paper proposes a Machine Natural Language Parser (MParser) to address the semantic interoperability problem between users and computers. By leveraging a semantic input method for sharing common atomic concepts, MParser represents any simple English sentence as a bag of unique and universal concepts via case grammar of an explainable machine natural language. In addition, it provides a human and computer-readable and -understandable interaction concept to resolve the semantic shift problems and guarantees consistent information understanding among heterogeneous sentence-level contexts. To evaluate the annotator agreement of MParser outputs that generates a list of English sentences under a common multilingual word sense, three expert participants manually and semantically annotated 75 sentences (505 words in total) in English. In addition, 154 non-expert participants evaluated the sentences’ semantic expressiveness. The evaluation results demonstrate that the proposed MParser shows higher compatibility with human intuitions.
ISSN:2076-3417
2076-3417
DOI:10.3390/app112411699