Effects of ricin on primary pulmonary alveolar macrophages

Objective We systematically investigated the cytotoxic effects of ricin in primary pulmonary alveolar macrophages (PAMs). Methods Primary PAMs were isolated from BALB/c mice. The cytotoxic effects of ricin were investigated in vitro by optical and transmission electron microscopy, detection of the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of international medical research 2019-08, Vol.47 (8), p.3763-3777
Hauptverfasser: Guo, Zhendong, Wang, Zhongyi, Meng, Shanyu, Zhao, Zongzheng, Zhang, Chunmao, Fu, Yingying, Li, Jiaming, Nie, Xin, Zhang, Cheng, Liu, Linna, Lu, Bing, Qian, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective We systematically investigated the cytotoxic effects of ricin in primary pulmonary alveolar macrophages (PAMs). Methods Primary PAMs were isolated from BALB/c mice. The cytotoxic effects of ricin were investigated in vitro by optical and transmission electron microscopy, detection of the inflammatory cytokine response, proteomic analysis, and subsequent biological functional analysis. Results Ricin induced shrinkage, apoptosis, vacuolization, and multi-organelle lesions in primary PAMs as demonstrated by optical and transmission electron microscopy. Ricin also induced a pronounced pro-inflammatory cytokine response in primary PAMs, including induction of tumor necrosis factor-α, interferon-γ, interleukin (IL)-1, IL-2, IL-6, IL-12, C-C motif chemokine ligand 2, and C-X-C motif chemokine ligand 2, while the anti-inflammatory cytokines IL-4 and IL-10 were less affected. Proteomic analysis and subsequent biological functional analysis identified eight proteins that were up/downregulated by ricin treatment and which might thus contribute to ricin toxicity. These proteins were involved in various functions, including redox, molecular chaperone, glycolysis, protein translation, and protein degradation functions. Conclusion The results of the present study further our understanding of the pathogenic mechanism of inhalational ricin poisoning.
ISSN:0300-0605
1473-2300
DOI:10.1177/0300060519842959