Quantum Boltzmann Machine

Inspired by the success of Boltzmann machines based on classical Boltzmann distribution, we propose a new machine-learning approach based on quantum Boltzmann distribution of a quantum Hamiltonian. Because of the noncommutative nature of quantum mechanics, the training process of the quantum Boltzma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2018-05, Vol.8 (2), p.021050, Article 021050
Hauptverfasser: Amin, Mohammad H., Andriyash, Evgeny, Rolfe, Jason, Kulchytskyy, Bohdan, Melko, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inspired by the success of Boltzmann machines based on classical Boltzmann distribution, we propose a new machine-learning approach based on quantum Boltzmann distribution of a quantum Hamiltonian. Because of the noncommutative nature of quantum mechanics, the training process of the quantum Boltzmann machine (QBM) can become nontrivial. We circumvent the problem by introducing bounds on the quantum probabilities. This allows us to train the QBM efficiently by sampling. We show examples of QBM training with and without the bound, using exact diagonalization, and compare the results with classical Boltzmann training. We also discuss the possibility of using quantum annealing processors for QBM training and application.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.8.021050