Titanate Nanotubes as New Nanostrutured Catalyst for Depolymerization of PET by Glycolysis Reaction
The final destination of PET packaging is creating economic and environmental concerns. One of the alternatives to minimize this problem would be making use of chemical recycling of this material through glycolysis with the aim to produce bis(hydroxiethyl) terephthalate, BHET monomer. This reaction...
Gespeichert in:
Veröffentlicht in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2017-01, Vol.20 (suppl 2), p.588-595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The final destination of PET packaging is creating economic and environmental concerns. One of the alternatives to minimize this problem would be making use of chemical recycling of this material through glycolysis with the aim to produce bis(hydroxiethyl) terephthalate, BHET monomer. This reaction is well known, but it still presents problems as BHET purity since it makes necessary the development of new catalysts highly selective. In this context, the present work studied the catalytic activity of a nanostructured material, titanate nanotubes (TNT), and compared it to a commercial catalyst (zinc acetate), which is the most used for this glycolysis reaction according to literature researches, and analyzed the influence of PET type (virgin and post-consumer) in the depolymerization for reaction times of 2, 3 and 4 hours. Using TNT as catalyst, BHET production yield and values of turnover number for the evaluated reaction times were higher than the results using Zn(OAc)2 for virgin PET, proving itself as a promising catalyst. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2017-0645 |