Blending 2D topography images from the Surface Water and Ocean Topography (SWOT) mission into the altimeter constellation with the Level-3 multi-mission Data Unification and Altimeter Combination System (DUACS)
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath-altimetry products. Despite SWOT's 2D coverage and precision, its Level-2 ocean products suffer from the same limitations as their counterparts from nadir altimetry missions. To achieve the mission's primary...
Gespeichert in:
Veröffentlicht in: | Ocean science 2025-01, Vol.21 (1), p.283-323 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath-altimetry products. Despite SWOT's 2D coverage and precision, its Level-2 ocean products suffer from the same limitations as their counterparts from nadir altimetry missions. To achieve the mission's primary science objectives, the space agencies generate Level-2 ocean products with SWOT alone. In contrast, some research domains and applications require consistent multi-mission observations, such as the Level-3 ocean products provided by the Data Unification and Altimeter Combination System (DUACS) for almost 3 decades and with 20 different satellites. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT's unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains. |
---|---|
ISSN: | 1812-0792 1812-0784 1812-0792 |
DOI: | 10.5194/os-21-283-2025 |