Structural changes in brains of patients with disorders of consciousness treated with deep brain stimulation

Disorders of consciousness (DOC) are one of the major consequences after anoxic or traumatic brain injury. So far, several studies have described the regaining of consciousness in DOC patients using deep brain stimulation (DBS). However, these studies often lack detailed data on the structural and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-02, Vol.11 (1), p.4401-4401, Article 4401
Hauptverfasser: Raguž, Marina, Predrijevac, Nina, Dlaka, Domagoj, Orešković, Darko, Rotim, Ante, Romić, Dominik, Almahariq, Fadi, Marčinković, Petar, Deletis, Vedran, Kostović, Ivica, Chudy, Darko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disorders of consciousness (DOC) are one of the major consequences after anoxic or traumatic brain injury. So far, several studies have described the regaining of consciousness in DOC patients using deep brain stimulation (DBS). However, these studies often lack detailed data on the structural and functional cerebral changes after such treatment. The aim of this study was to conduct a volumetric analysis of specific cortical and subcortical structures to determine the impact of DBS after functional recovery of DOC patients. Five DOC patients underwent unilateral DBS electrode implantation into the centromedian parafascicular complex of the thalamic intralaminar nuclei. Consciousness recovery was confirmed using the Rappaport Disability Rating and the Coma/Near Coma scale. Brain MRI volumetric measurements were done prior to the procedure, then approximately a year after, and finally 7 years after the implementation of the electrode. The volumetric analysis included changes in regional cortical volumes and thickness, as well as in subcortical structures. Limbic cortices (parahippocampal and cingulate gyrus) and paralimbic cortices (insula) regions showed a significant volume increase and presented a trend of regional cortical thickness increase 1 and 7 years after DBS. The volumes of related subcortical structures, namely the caudate, the hippocampus as well as the amygdala, were significantly increased 1 and 7 years after DBS, while the putamen and nucleus accumbens presented with volume increase. Volume increase after DBS could be a result of direct DBS effects, or a result of functional recovery. Our findings are in accordance with the results of very few human studies connecting DBS and brain volume increase. Which mechanisms are behind the observed brain changes and whether structural changes are caused by consciousness recovery or DBS in patients with DOC is still a matter of debate.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-83873-y