Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
Identifying human protein-phenotype relationships has attracted researchers in bioinformatics and biomedical natural language processing due to its importance in uncovering rare and complex diseases. Since experimental validation of protein-phenotype associations is prohibitive, automated tools capa...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2021-10, Vol.22 (1), p.1-500, Article 500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identifying human protein-phenotype relationships has attracted researchers in bioinformatics and biomedical natural language processing due to its importance in uncovering rare and complex diseases. Since experimental validation of protein-phenotype associations is prohibitive, automated tools capable of accurately extracting these associations from the biomedical text are in high demand. However, while the manual annotation of protein-phenotype co-mentions required for training such models is highly resource-consuming, extracting millions of unlabeled co-mentions is straightforward. In this study, we propose a novel deep semi-supervised ensemble framework that combines deep neural networks, semi-supervised, and ensemble learning for classifying human protein-phenotype co-mentions with the help of unlabeled data. This framework allows the ability to incorporate an extensive collection of unlabeled sentence-level co-mentions of human proteins and phenotypes with a small labeled dataset to enhance overall performance. We develop PPPredSS, a prototype of our proposed semi-supervised framework that combines sophisticated language models, convolutional networks, and recurrent networks. Our experimental results demonstrate that the proposed approach provides a new state-of-the-art performance in classifying human protein-phenotype co-mentions by outperforming other supervised and semi-supervised counterparts. Furthermore, we highlight the utility of PPPredSS in powering a curation assistant system through case studies involving a group of biologists. This article presents a novel approach for human protein-phenotype co-mention classification based on deep, semi-supervised, and ensemble learning. The insights and findings from this work have implications for biomedical researchers, biocurators, and the text mining community working on biomedical relationship extraction. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-021-04421-z |