The Influence of Low-Frequency Oscillations on Trailing-Edge Tonal Noise with Symmetry Spanwise Source Regions

For noise reduction at a low-to-moderate Reynolds number, airfoil trailing-edge tonal noise has multiple prominent tones. Among these tones, secondary tones are greatly influenced by external disturbances such as oscillations commonly in the environment. In previous experiments, the spatial movement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-06, Vol.16 (6), p.710
Hauptverfasser: Song, Zhangchen, Liu, Peiqing, Guo, Hao, Sun, Yifeng, Jiang, Shujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For noise reduction at a low-to-moderate Reynolds number, airfoil trailing-edge tonal noise has multiple prominent tones. Among these tones, secondary tones are greatly influenced by external disturbances such as oscillations commonly in the environment. In previous experiments, the spatial movement of sources was found to be related to an inherent high-frequency oscillation. Therefore, the spatial influence of external low-frequency oscillations was investigated in this study. By using tripping tapes to construct different symmetry source regions on the pressure side with side secondary tones, a transient spatial analysis of an NACA0012 airfoil at 2 degrees was performed by microphone arrays when a 10 Hz pressure oscillation was significant at 24 m/s. Temporally, this 10 Hz periodic strength change became more intense at a broader frequency bandwidth for a longer source region. Furthermore, a substantial time delay, significantly larger than the sound propagating time difference between microphones, was observed exclusively along the spanwise direction. This delay led to a periodic directivity pattern, particularly when two 0.2 m source regions were separated by a 0.2 m or 0.4 m tripping region. This low-frequency oscillation introduces an asymmetric transient switching pattern for symmetric spanwise source regions. Consequently, the response of airfoils to external oscillations in field tests should be considered.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16060710