A triple junction energy study using an inclination-dependent anisotropic Monte Carlo Potts grain growth model

This work presents a Monte Carlo Potts grain growth model in which the grain boundary (GB) energies depend on the GB inclination. The inclination is calculated using a linear smoothing approach developed by the authors. In bicrystal simulations with a shrinking grain, the grain changes shape to pref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2024-03, Vol.239 (C), p.112763, Article 112763
Hauptverfasser: Yang, Lin, Yadav, Vishal, Melville, Joseph, Harley, Joel B., Krause, Amanda R., Tonks, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a Monte Carlo Potts grain growth model in which the grain boundary (GB) energies depend on the GB inclination. The inclination is calculated using a linear smoothing approach developed by the authors. In bicrystal simulations with a shrinking grain, the grain changes shape to prefer low energy GB inclinations. However, in polycrystal simulations the preferred inclinations depend on the approach used to assign the triple junction (TJ) energies. Approaches that produce unimodal TJ energy distributions result in the expected behavior of preferring low energy GB inclinations. However, approaches that produce bimodal TJ energy distributions result in medium energy or even high energy inclinations being preferred. Overall, this study underscores the importance of TJs in anisotropic grain growth. •We present the first inclination-dependent anisotropic grain growth model using the Monte Carlo Potts method.•Low energy grain boundary inclinations are preferred in bicrystal simulations but not necessarily in polycrystals.•In polycrystals, low energy GB inclinations are preferred if the TJ energies have symmetric unimodal distributions.•If the TJ energies have bimodal distributions, medium or even high energy inclinations are preferred.
ISSN:0264-1275
1873-4197
DOI:10.1016/j.matdes.2024.112763