Are You Depressed? Analyze User Utterances to Detect Depressive Emotions Using DistilBERT

This paper introduces the Are u Depressed (AuD) model, which aims to detect depressive emotional intensity and classify detailed depressive symptoms expressed in user utterances. The study includes the creation of a BWS dataset using a tool for the Best-Worst Scaling annotation task and a DSM-5 data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-05, Vol.13 (10), p.6223
Hauptverfasser: Oh, Jaedong, Kim, Mirae, Park, Hyejin, Oh, Hayoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces the Are u Depressed (AuD) model, which aims to detect depressive emotional intensity and classify detailed depressive symptoms expressed in user utterances. The study includes the creation of a BWS dataset using a tool for the Best-Worst Scaling annotation task and a DSM-5 dataset containing nine types of depression annotations based on major depressive disorder (MDD) episodes in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). The proposed model employs the DistilBERT model for both tasks and demonstrates superior performance compared to other machine learning and deep learning models. We suggest using our model for real-time depressive emotion detection tasks that demand speed and accuracy. Overall, the AuD model significantly advances the accurate detection of depressive emotions in user utterances.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13106223